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Abstract Recent years have witnessed increasing use of

positron emission tomography (PET) in cancer staging and

monitoring. In particular, 18F-fluoro-2-deoxy-D-glucose

(FDG) has frequently been used in clinical practice for tumor

detection, staging, and gross tumor volume definition in dif-

ferent cancer sites. More recently, there has been accumulat-

ing evidence that pre- and intra-treatment FDG uptake could

be used as a prognostic factor for predicting cancer treatment

outcomes. Typically, quantitative analysis of FDG uptake is

based on observed changes in the standardized uptake value

(SUV). However, SUV descriptors themselves might be

influenced by the initial FDG uptake intensity, radiotracer

distribution, and changes in tumor volume. These factors and

others might make this approach prone to significant intra- and

inter-observer variability. Alternatively, more recent efforts

have been directed toward the use of advanced image feature

analysis techniques as part of the emerging field of radiomics.

In this work, we review recent advances and discuss current

challenges regarding the use of PET imaging for predicting

cancer outcomes. We discuss issues related to image feature

extraction, statistical modeling, tracer type, and combination

with other imaging modalities for the purpose of developing

robust PET-based models of treatment outcomes. We provide

examples based on our experience, and that of others, of PET

imaging used alone or with other complementary modalities

for predicting outcomes in radiotherapy and their application

in personalizing treatment through dose painting. We also

highlight the potential opportunities in this field for person-

alizing cancer treatment and improving clinical decision

making.
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Introduction

Positron emission tomography (PET) imaging is increas-

ingly used in oncology in general, and in radiation oncol-

ogy in particular, for the purposes of diagnosis, grading,

staging and assessment of treatment response. For instance,

PET imaging with 18F-fluoro-2-deoxy-D-glucose (FDG), a

glucose metabolism analog, has been applied for the

diagnosis, staging and treatment planning of lung cancer

[1–10], head and neck cancer [11, 12], prostate cancer [13],

cervical cancer [14, 15], colorectal cancer [16], lymphoma

[17, 18], melanoma [19] and breast cancer [20–22].

Moreover, there is accumulating evidence that pre-treat-

ment or post-treatment FDG PET uptake could be used as a

prognostic factor for predicting outcomes [23–27]. This

suggestion was motivated by the fact that tumor uptake is

dependent on the characteristics of its microenvironment,

which may influence treatment response. For instance, in a

pre-clinical study, FDG uptake appeared to be positively

correlated with hypoxia and negatively correlated with

proliferation and perfusion [28]. Besides FDG, other PET

tracers have been shown to be useful biomarkers for

interrogating tumor properties that could affect response to

therapy such as blood flow, investigated using 15O-water;

hypoxia using 18F-fluoromisonidazole (FMISO) or 64Cu-

diacetyl-bis(N(4)-methylthiosemicarbazone) (Cu-ATSM);

and DNA synthesis and cell proliferation using 18F-
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fluorothymidine (FLT) and 18F-1-(20-deoxy-20-fluoro-b-D-

arabinofuranosyl)-thymine (FMAU) [29]. Tumor oxygen-

ation could be evaluated using Cu-ATSM [30] or FMISO

[31], both of which have been shown to correlate with

treatment failure. Cellular proliferation may be measured

with radiolabeled nucleosides, such as FLT. In an experi-

mental model, changes in FLT uptake post-irradiation were

shown to be more pronounced than changes in FDG uptake

and to correlate well with the proliferative activity of

transplanted tumors [32]. In a pilot study, it was shown that

FLT can be used to monitor changes in cellular prolifera-

tion in lung cancer patients during radical chemoradio-

therapy [33].

The extraction of quantitative information from imaging

modalities and the relating of this extracted information to

biological and clinical endpoints is the subject of a new

emerging field referred to as ‘radiomics’ [34, 35]. Tradi-

tionally, quantitative analysis of uptake of FDG or of other

PET tracers is based on observed changes in the stan-

dardized uptake value (SUV). For instance, decreased

SUVs post-irradiation have been associated with better

outcomes in lung cancer [36, 37]. However, SUV mea-

surements themselves are potentially prone to errors due to

the initial FDG uptake kinetics and radiotracer distribution,

which are dependent on the initial radiotracer injected

activity and the time elapsing between the tracer injection

and the image acquisition. In addition, some commonly

reported SUV measurements might be sensitive to changes

in tumor volume definition (e.g., mean SUV). These factors

and others might make such an approach subject to sig-

nificant intra- and inter-observer variability [25, 27, 38].

Several approaches have been proposed in the literature

to overcome the limitations of simple SUV descriptors. A

visual assessment method was used by Kalff et al. [25] to

evaluate heterogeneity in FDG images from patients with

locally advanced rectal carcinoma. Hicks et al. [27] applied

a simple pattern recognition technique to FDG images of

lung cancer and found that inflammatory changes corre-

lated with tumor response suggesting that tumor radiore-

sponsiveness and normal tissue radiosensitivity may be

linked. However, more recent approaches have focused on

the application of more advanced image-based features to

distinguish responders from non-responders to therapy.

Moreover, the extraction of relevant image features to a

particular clinical endpoint remains a challenging task.

This is an emerging area in outcomes research that inno-

vative approaches developed in the field of radiomics aim

to investigate. The problem of radiomics could be posed as

an engineering pattern recognition problem [38–40], which

requires an understanding of the observed clinical endpoint

and the underlying characteristics of the imaging modality

considered. Image-derived features can generally be divi-

ded, according to their nature, into spatial (static) and

temporal (dynamic) features or combinations of the two.

Static image features would include intensity histogram

analysis, shape and morphology, and texture/roughness.

These image-based features can provide better spatial

characterization of uptake heterogeneity than the simple

SUV descriptors currently employed [38] and might

therefore result in improved ability to predict treatment

outcomes [41]. Dynamic features are extracted from time-

varying acquisition protocols such as dynamic PET or MR.

These features are based on kinetic analysis using, for

example, tissue compartment models and parameters rela-

ted to tracer transport and binding rates, and they can

provide radiomics modelers with valuable temporal infor-

mation about tracer uptake variability [42].

In addition to the valuable physiological information

(tumor metabolism, proliferation, necrosis, hypoxic

regions, etc.) that can be collected from PET, additional

knowledge can be gained from incorporating other imaging

modalities that provide anatomical information, thereby

making it possible to improve treatment planning, moni-

toring and prognosis in different cancer sites. For instance,

changes in tumor volume captured on CT may be predic-

tive of local tumor control in lung cancer patients [43, 44].

Interestingly, recent studies show that rectum status (full/

empty) or the presence of bowel gas at the time of treat-

ment planning may predict treatment failure [45] and the

risk of rectal bleeding [46], probably due to a shift of the

irradiation field compared to anatomy upon delivery. The

complementary nature of different imaging modalities has

led to direct efforts toward combining the physical and

biological information they provide to achieve better

treatment outcomes. For example, PET/CT has been uti-

lized for staging, planning and assessment of response to

radiation therapy in different cancer sites including lung,

gynecological, and colorectal cancers [47]. Denecke et al.

[48] compared CT, MRI and FDG PET in the prediction of

outcome of neoadjuvant radiochemotherapy in patients

with locally advanced primary rectal cancer, demonstrating

sensitivities of 100 % for FDG PET, 54 % for CT, and

71 % for MRI, and specificities of 60 % for FDG PET,

80 % for CT, 67 % for MRI. Benz et al. [49] showed that

combined assessment of metabolic and volumetric changes

predicts tumor response in patients with soft-tissue sarco-

mas. Similarly, Yang et al. [50] showed that the combined

evaluation of contrast-enhanced CT and FDG PET/CT

predicts clinical outcomes in patients with aggressive non-

Hodgkin’s lymphoma.

In this review, we will describe different imaging fea-

tures used for characterizing tumor behavior. We will

provide a review of the statistical modeling techniques that

could be applied to integrate these different features for the

purpose of developing robust PET-based models of treat-

ment outcomes and discuss their application in
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personalizing treatment using techniques such as dose

painting. We also discuss current issues and challenges and

highlight the potential opportunities in this field for per-

sonalizing cancer treatment and improving clinical deci-

sion making in oncology.

PET image-based features

The features extracted from PET images (radiomics) can be

divided into static (time-invariant) and dynamic (time-

varying) features according to the acquisition protocol at

the time of scanning and into pre- or intra-treatment fea-

tures according to the scanning time point. Examples of

static and dynamic features used in the literature are

described below and summarized in Table 1.

Static PET features

(a) SUV descriptors: SUV measurement is a standard

method in quantitative analysis of PET images [51].

In this case, raw intensity values are converted into

SUVs and statistical descriptors such as maximum,

minimum, mean, standard deviation (SD), and

coefficient of variation (CV) are extracted. An

example is shown in Fig. 1, which shows PET-based

nomograms for predicting cervical cancer treatment

response [52].

(b) Total lesion glycolysis (TLG): This is defined as the

product of tumor volume and mean SUV [5, 49, 53].

(c) Intensity–volume histogram (IVH): This is analo-

gous to the dose–volume histogram widely used in

radiotherapy treatment planning to reduce compli-

cated 3D data to a single curve that is easier to

interpret. Each point on the IVH defines the absolute

or relative volume of the structure (tumor or normal

tissue) that exceeds a variable intensity threshold as

a percentage of the maximum intensity [38]. This

method allows the extraction of several metrics from

PET images for outcome analysis, such as Ix

(minimum intensity to x% highest intensity volume),

Vx (percentage volume having at least x% intensity

value), in addition to descriptive statistics (mean,

minimum, maximum, SD, etc.). We have previously

reported examples of the use of the IVH approach

for predicting local control in lung cancer from PET/

CT images [54].

(d) Morphological features: These are generally geo-

metrical shape attributes such as eccentricity (a

measure of non-circularity), which is useful for

describing tumor growth directionality; Euler num-

ber (the number of connected objects in a region

Table 1 Summary of variables

commonly extracted from PET

images for outcome modeling in

oncology

Category Data Comments

SUV descriptive

measurements

Maximum The highest single value within the region of

interest (ROI)

Peak Derived from a circular ROI of 0.75–1.5 cm in

diameter centered on the maximum-value pixel;

the mean SUV within this ROI is evaluated

Total lesion glycolysis Mean SUV by tumor volume

Other statistics Mean, minimum, standard deviation, coefficient of

variation

Intensity–volume

metrics

Vx (5–100 in steps of 5 as

percentage of the SUV uptake)

Percentage volume having x% intensity

Ix (5–100 in steps of 5) Minimum intensity to x% volume

Heterogeneity metrics Difference between Ix and Vx measures

Texture-based

features

GLCM 2nd order histogram features (energy, entropy,

contrast and homogeneity)

NGTDM Higher order histogram features (coarseness,

contrast, busyness, and complexity)

RLM Regional features

GLSZM Regional features

Shape-based

features

Eccentricity Geometric and topological characteristics

Euler number

Solidity

Extent

Kinetic

parameters

K1, k2, k3, and k4 Compartment modeling parameters (cf. Fig. 2)

Metabolic uptake rate (K-FDG) FDG compartment analysis
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minus the number of holes), which is useful for

describing tumors with necrotic regions; and solidity

(this is a measurement of convexity), which may be

a characteristic of benign versus malignant lesions

[55, 56]. In an interesting demonstration of this

principle, a shape-based metric, based on the devi-

ation from an idealized ellipsoid structure (i.e.,

eccentricity), was found to provide an indication of

metastatic behavior in tumors and showed a strong

association with survival in patients with sarcoma

[56, 57]. A more advanced extension of this

approach has recently been developed, which utilizes

a tubular representation of the sarcoma structure

with simplified radial analysis of FDG uptake.

Interestingly, this approach could be used to distin-

guish between early phases of tumors characterized

by high uptake at the core, and later advanced stages,

characterized by central necrotic regions (voids in

uptake) [58].

(e) Textural features: Texture in imaging refers to the

relative distribution of intensity values within a

given neighborhood. It integrates intensity with

spatial information resulting in higher order histo-

grams (probability distributions) as opposed to

conventional first-order intensity histograms. It

Fig. 1 FDG PET-based

prognostic nomograms using

PET lymph node involvement,

cervical tumor SUVmax, and

PET tumor volume for

recurrence-free survival

(reproduced with permission

from Ref. [52])

Table 2 Selected GLCM (Pij) features for analysis of PET data

Co-occurrence feature Definition

Energy PM

i¼1

PM

j¼1

P2
ij

Contrast PM

i¼1

PM

j¼1

ði� jÞ2Pij

Local homogeneity PM

i¼1

PM

j¼1

Pij

1þði�jÞ2

Entropy PM

i¼1

PM

j¼1

Pij log½Pij�

Table 3 Selected NGTDM with si being the ith entry and pi the

probability of occurrence of gray tone i in the PET data

Gray tone difference

feature

Definition

Coarseness
eþ

PM

i¼1

pisi

� ��1

Contrast PM

i¼1

PM

j¼1

ði� jÞ2Pij

" #

1
n2

PM

i¼1

si

� �

Busyness PM

i¼1

pisi

� �,
PM

i¼1

PM

j¼1

ipi � jpj

" #

Complexity PM

i¼1

PM

j¼1

i� jj jð Þ
�

n2 pi þ pj

� �� �� �
pisi þ pjsj

� �
cFig. 2 Left patient A and right patient B data. a PET scan of cervical

tumor showing the region of interest (brown) and the 40 % maximum

SUV delineated tumor (green). b Intensity–volume histogram (IVH)

plots. Surface plots of the co-occurrence matrix for c cervical tumor

ROI and d 40 % maximum SUV delineated tumor. Note that patient B’s

tumor seems to be more heterogeneous. This could be inferred visually

from the shallowness of the IVH, and the spread of the co-occurrence

plot (reproduced with permission from Ref. [38]) (color figure online)
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worth emphasizing that texture metrics are inde-

pendent of tumor position, orientation, size and

brightness, and take into account the local intensity-

spatial distribution [59, 60]. This is a crucial

advantage over direct (first-order) histogram metrics

(e.g., mean and SD), which only measure intensity

variability independent of the underlying spatial

distribution in the tumor microenvironment. Tex-

ture methods are broadly divided into three cate-

gories: statistical methods (e.g., high-order

statistics, co-occurrence matrices, moment invari-

ants), model-based methods (e.g., Markov random

fields, Gabor filter, wavelet transform), and struc-

tural methods (e.g., topological descriptors, fractals)

Fig. 3 Pre-treatment PET/CT image of a patient with NSCLC who

failed locally. a PET/CT overlaid image. b Intensity–volume

histograms (IVH) of b CT and c PET, respectively. d, e Are the

texture maps of the corresponding region of interest for CT (intensity

bins equal 100 HU) and PET (intensity bins equal 1 unit of SUV),

respectively. Note the variability between the CT and PET features:

the PET IVH and GLCM matrices show much greater heterogeneity

for this patient. Importantly, the amount of PET and CT gross disease

image heterogeneity varies greatly between patients (color figure

online)
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[61, 62]. Among these methods, statistical

approaches based on the co-occurrence matrix

and its variants such as the gray level co-occur-

rence matrix (GLCM), neighborhood gray tone

difference matrix (NGTDM), run-length matrix

(RLM), and gray level size-zone matrix (GLSZM)

have been widely applied for characterizing FDG

PET heterogeneity [63]. Four commonly used

features from the GLCM include (Table 2):

energy, entropy, contrast, and homogeneity [60].

The NGTDM is thought to provide more human-

like perception of texture such as (Table 3):

coarseness, contrast, busyness, and complexity

[64]. RLM and GLSZM emphasize regional

effects. Textural features were shown to predict

response in cancers of the cervix [38], esophagus

[65], head and neck [66], and lung [67]. In

addition, textural features from FLT PET were

demonstrated to quantify intra-tumor proliferation

heterogeneity in breast cancer treated with che-

motherapy [68]. MaZda is a dedicated software for

image texture analysis [69].

Figures 2, 3, 4 show examples of the use of the IVH and

texture in different scenarios: in FDG PET of cervical

cancer (Fig. 2), FDG PET/CT of lung cancer (Fig. 3), and

multi-tracer imaging (FDG/Cu-ATSM PET) of cervical

cancer (Fig. 4).

Dynamic PET features

These features are based on kinetic analysis using tissue

compartment models and parameters related to tracer

transport and its binding rates [42]. In the case of FDG, a

three-compartment model can be used to depict the

trapping of FDG-6-phosphate in tumors [70, 71]. In

Fig. 5, we show an example of estimation of kinetic

parameters from dynamic FDG PET compartmental

modeling. The glucose metabolic uptake rate can be

evaluated using these estimated kinetic parameters. The
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Fig. 4 The two rows, referring to an individual patient with primary cervical cancer, show texture maps for FDG (metabolic marker) and Cu-

ATSM (hypoxia marker) alone, and overlapping texture maps of the two markers (color figure online)

Fig. 5 General compartmental model of tracer kinetics in a tumor. For

instance, in case of FDG, Cp(t) denotes the plasma input function, which

could be estimated from blood sampling or using reference tissue

models; Cf(t) the concentration of un-phosphorylated (free) FDG; and

Cb(t) the concentration of FDG-6-phosphate (bound). The bi-direc-

tional transport across the membrane via GLUTs is represented by the

rate-constants K1 and k2, the phosphorylation of FDG is denoted by k3

while the action of G6-phophatase is represented with rate constant k4.

Using estimates of compartmental modeling, measures of metabolic

uptake rate (K) could be evaluated by the relation K = K1 9 k3/

(k2 ? k4) by simple solution of the ordinary differential equation of the

corresponding system (color figure online)
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uptake rate and other compartment estimates themselves

can be used to form ‘‘parameter-map’’ images. Image

features, including the previously described static ones

such as IVH or texture, can be derived from these

parameter maps. The literature reports examples of the

use of dynamic features for predicting response. The

glucose metabolic rate was correlated with pathologic

tumor treatment response in lung cancer [72]. Thorwarth

et al. [73, 74] published interesting data on the scatter of

voxel-based parameter maps of local perfusion and

hypoxia in head and neck cancer. Tumors showing greater

variation in local perfusion and hypoxia showed less

reoxygenation during a course of radiotherapy and had

worse treatment outcomes.

Outcome modeling

Outcomes in oncology and particularly in radiation

oncology are characterized by tumor control probability

(TCP) and the surrounding normal tissue complication

probability (NTCP) [75, 76]. We have previously presented

a detailed review of outcome modeling in radiotherapy

[77]. DREES is a dedicated software tool for modeling

radiotherapy response [78]. In the context of the modeling

of image-based treatment outcomes, the observed outcome

(e.g., TCP or NTCP) is considered to be adequately cap-

tured by extracted image features [38, 40]. We will high-

light this approach using logistic regression and machine

learning methods.

Fig. 6 Multi-metric modeling of local failure from PET/CT features.

a Model order selection using leave-one-out cross-validation. b Most

frequent model selection using bootstrap analysis. c Plot of local

failure probability as a function of patients binned into equal-size

groups showing the model prediction and the original data (repro-

duced with permission from Ref. [54]) (color figure online)
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Logistic regression

Logistic modeling is a common tool for multi-metric

(multi-variable) modeling. In our previous work [79, 80], a

logit transformation, which has a sigmoidal response shape,

was used:

f ðxiÞ ¼
egðxiÞ

1þ egðxiÞ
; i ¼ 1; . . .; n; ð1Þ

where n is the number of cases (patients), xi is a vector of the

input variable values (i.e., static and/or dynamic image fea-

tures) used to predict f(xi) for outcome yi (i.e., TCP or NTCP)

of the ith patient. The ‘x-axis’ summation is given by:

gðxiÞ ¼ bo þ
Xd

j¼1

bjxij; i ¼ 1; . . .; n; j ¼ 1; . . .; d; ð2Þ

where d is the number of model variables and the b’s are

model coefficients determined by maximizing the proba-

bility of the data giving rise to clinical events (i.e., TCP or

NTCP). Resampling methods such as cross-validation (e.g.,

leave-one-out cross-validation or Jackknife) and boot-

strapping (e.g., sampling with replacement) methods could

be used to determine optimal model order and parameter

selection as shown in the example of multi-metric model-

ing in lung cancer using FDG PET/CT features shown in

Fig. 6 [54]. A major weakness in using this formalism,

however, is that the model has limited capacity to follow

details of the data trends (i.e., the model has a limited

learning capacity when dealing with complex relationships

that might be embedded in the data). In addition, Eq. (2)

requires the user’s feedback to determine whether inter-

action terms or higher order variables should be added,

making it a trial-and-error process. A solution to mitigate

this problem is offered by applying machine learning

methods as discussed below.

Machine learning

Machine learning is a branch of artificial intelligence that

deals with the design and development of computational

and statistical methods for learning from data [81, 82]. A

class of machine learning methods that is particularly

powerful and computationally efficient for image-based

outcome prediction applications in oncology includes so-

called Kernel-based methods and their most prominent

sub-type, support vector machines (SVM). These methods

have been applied successfully in many diverse areas

including outcome prediction [40, 83–86].

Learning is defined in this context as estimating

dependencies from data [82]. There are two common types

of machine learning: supervised and unsupervised. Super-

vised learning is used to estimate an unknown (input,

output) functional mapping from known (input, output)

sample pairs (e.g., classification or regression applications).

On the other hand, in unsupervised learning no functional

mapping is estimated and only input samples are given to

the learning system (e.g., clustering or dimensionality

reduction applications). In the example of outcome pre-

diction (i.e., discrimination between patients who are at

low risk versus patients who are at high risk of local

treatment failure), the main function of the kernel-based

technique would be to separate these two classes with

‘hyper-planes’ that maximize the margin (separation)

between the classes in a nonlinear feature space. The

objective here would be to minimize the bounds on the

generalization testing error of a model based on previously

unseen data (out-of-sample data) rather than to minimize

the mean square error over the training dataset itself (data

fitting).

Mathematically, the optimization problem could be

formulated as minimizing the following cost function:

Lðw; nÞ ¼ 1

2
wT wþ C

Xn

i¼1

ni; ð3Þ

subject to the constraint:

yi wTUðxiÞ þ b
� �

� 1� fi i ¼ 1; 2; . . .; n;

fi� 0 for all i
ð4Þ

where w is a weighting vector and Uð�Þ is a nonlinear

mapping function from the input data space to the feature

space, where the samples can be easily separated. The fi

represents the tolerance error allowed for each sample to be

on the wrong side of the margin (called hinge loss). Note

that minimization of the first term in Eq. (3) increases the

separation (margin) between the two group classes, of low

versus high risk of treatment failure, whereas minimization

of the second term improves fitting accuracy. The trade-off

between complexity (or margin separation) and fitting error

is controlled by the regularization parameter C. However,

such a nonlinear formulation would suffer from the curse

of dimensionality (i.e., the dimensions of the problem

become too large to solve) [82, 87]. Therefore, the dual

optimization problem is solved instead of the primal

problem in Eqs. (3, 4), which turns out to be convex and its

computational complexity becomes dependent only on the

number of samples and not on the dimensionality of the

feature space. Moreover, the prediction function in this

case is characterized only by a subset of the training data,

each of which is then known as a ‘support vector’ si:

f ðxÞ ¼
Xns

i¼1

aiyiKðsi; xÞ þ a0; ð5Þ

where ns is the number of support vectors (i.e., samples at

the boundary), ai are the dual coefficients determined by
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quadratic programming, and K(�, �) is the kernel function.

Typical kernels (mapping functionals) include:

Polynomials : Kðx; x0Þ ¼ ðxT x0 þ cÞq

Radial basis function (RBF): Kðx; x0Þ ¼ exp � 1

2r2
x� x0k k2

	 


;

ð6Þ

where c is a constant, q is the order of the polynomial, and

r is the width of the radial basis (Gaussian) functions. Note

that the kernel in these cases also acts as a similarity

function between sample points (support vectors) in the

feature space determining their classification group and

their corresponding probabilities. An example of applying

Fig. 7 An example of a kernel-based approach for modeling TCP in

lung cancer. a Kernel-based mapping from a lower dimensional space

(X) to a higher dimensional space (Z) called the feature space, where non-

separable classes become linearly separable. b Logistic regression.

c Nonlinear kernels with overlaid training points. d Comparison of

different TCP models, binned by the predicted rate of local control. Note

that the best performance was achieved by the nonlinear model (SVM-

RBF) (reproduced with permission from Ref. [88]) (color figure online)
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kernel-based approaches to TCP modeling in lung cancer is

shown in Fig. 7 [88].

Performance evaluation and validation methods

Evaluation metrics

To evaluate the performance of statistical classifiers in

PET-based outcome models, one can use the Matthew’s

correlation coefficient (MCC) [89] as a performance

evaluation metric for classification. An MCC value of 1

would indicate perfect classification, a value of -1 would

indicate anti-classification, and a value close to zero

would mean no correlation. Alternatively, one can use the

area under the receiver–operating characteristics (AU-

ROC) curve [90]; MCC and AU-ROC tend to be pro-

portional, with ROC giving a more pictorial representa-

tion of the performance. In the case of PET-based

regression outcome models, Spearman rank correlation

has been widely applied, as it provides a simple robust

estimator of trend, which need not necessarily show a

linear relationship as in the case of Pearson correlation

coefficient [91].

Statistical validation

Model selection could be conducted and evaluated using

information theoretic metrics (e.g., Akaike information

criteria or Bayesian information criteria) and statistical

resampling methods (e.g., cross-validation or bootstrap-

ping). These methods are useful for performance compar-

ison purposes and when applied properly can provide

statistically sound results about bias, variance, confidence

intervals, prediction error and the generalizability of a

derived outcome prediction model particularly when the

available dataset(s) for training, validation and testing

is(are) limited [92, 93].

PET-based dose painting

An interesting application for PET-based outcome model-

ing is found in personalized radiotherapy treatment plan-

ning, in which areas of suspected radiation resistance can

be painted with higher radiation dose per fraction and total

dose to achieve better tumor local control (TCP) and

reduce the possible risk of distant failure while maintaining

a similar, normal level of tissue toxicity (NTCP). In this

context, dose painting is defined as the process of pre-

scribing non-uniform radiation dose distribution to the

targeted tumor volume based on functional or molecular

imaging information relevant to treatment response [94–

96]. The main strategies that have been considered in the

literature can be divided into subvolume boosting and

painting by numbers or a hybrid approach of both.

Subvolume boosting

This dose-painting strategy involves dividing the targeted

tumor volume into discrete regions following the so-called

Fletcher’s volume of cancer hypothesis [97], according to

which tumor burden as found from functional imaging can

be reduced by simultaneous boost techniques in radio-

therapy, for instance. In this case, the radiotherapy plan

would consist of delivering the boost (additional radiation

doses to the subvolumes) simultaneously with the basic

(large-field) treatment in all treatment sessions [98, 99].

Examples of this technique reported in the literature

include the successful use of FDG PET to manually

delineate tumors into subvolumes for boosting in a phase I

study of locally advanced head and neck cancer [100].

Another example, in which FDG PET is used in soft-tissue

sarcoma, is shown in Fig. 8; here, the FDG PET uptake in

the tumor was thresholded on the basis of percentage SUV

levels to define the subvolumes for boosting [101].

Dose painting by numbers

This dose-painting strategy involves prescribing dose (D)

at the image intensity (I) voxel level, for example this

could be given by [102]:

DðIÞ ¼ Dmin þ
I � Imin

Imax � Imin

�ðDmax � DminÞ; ð7Þ

As with subvolume boosting, functional and molecular

imaging modalities such as PET or MRI could be used for

painting by numbers. Several authors have derived more

complex mapping schemes that relate the painting process

directly or indirectly to predicted TCP [103, 104]. How-

ever, the heterogeneity of the resulting dose distribution

could be limited by the complexity of radiation delivery in

such cases and should be taken into consideration when

applying this strategy [95]. Thorwarth et al. [103] dem-

onstrated an example of hypoxia dose painting with

FMISO, in which a semi-mechanistic modeling approach

was proposed and the radiosensitivity parameters of the

linear quadratic model were modified according to the

retention of FMISO [104].

Issues and recommendations

Structure definition

The ability to distinguish the structure of interest from

neighboring structures, i.e., to segment the tumor from
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surrounding normal tissues, is a necessary prerequisite to

subsequent image-based outcome prediction and can sig-

nificantly impact on subsequent feature extraction as dis-

cussed earlier. This process of contouring or segmentation

can be carried out manually, which is a pretty laborious

task associated with known intra- and inter-observer vari-

ability, or it can be performed using automated or semi-

automated segmentation algorithms. It was recently

reported that definition of the region of interest can impact

on some textural features [105]. In our work on PET-gui-

ded treatment planning in radiotherapy, we presented a

comparative survey of the current methods applied for PET

tumor segmentation that could range from simple thres-

holding to sophisticated pattern recognition approaches

[106, 107]. An AAPM task group (TG-211) is currently

classifying the different PET auto-segmentation methods to

provide guidelines on their advantages and limitations and

on the applicability of each class of methods to the dif-

ferent radiation oncology tasks. A promising approach to

improve the robustness of PET segmentation is to combine

the information it provides with that derived from other

modalities such as CT or MR [108, 109].

Robustness and stability

It is well recognized that image acquisition protocols may

affect the reproducibility of features extracted from PET

images, and that this may consequently affect the robust-

ness and stability of these features for outcome prediction.

This applies both to static features such as SUV descriptors

[110–112] and textural features [113, 114]. Interestingly,

texture-based features were shown to have a reproducibil-

ity similar to or better than that of simple SUV descriptors

[115]. Moreover, textural features from the GLCM seemed

to exhibit lower variations than NGTDM features [113].

Nevertheless, some clinical variables can have a con-

founding effect on reported texture metrics across different

datasets. For example, it has been reported that local

entropy, a GLCM textural feature, could be dependent on

tumor volume below a certain threshold in cervical cancer

Fig. 8 Soft-tissue sarcoma dose-painting distributions and dose–

volume histogram (DVH) using subregions defined by FDG PET/CT

and MRI information. The figure shows the dose-painting distribution

on axial, coronal and sagittal views. The DVHs for the different

subregions illustrates the conformality and uniformity of the dose-

painting process of the escalated regions. These results were

confirmed using Monte Carlo (Ref. [101]) (color figure online)
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[105]. Other factors that may affect the stability of these

features include signal-to-noise ratio, partial volume effect,

motion artifacts, parameter settings, resampling size, and

image quantization [38, 114]. In the case of dynamic fea-

tures, similar concerns are raised with regard to the vari-

ability of kinetic parameter estimates along with the extra

scanning time requirements involved [116, 117]. Turkhei-

mer et al. [118] proposed using a multi-resolution Bayesian

approach to reduce such variability in dynamic PET.

Although certain features may exhibit better robustness

than others and would be preferable for outcome modeling,

some form of standardization of PET acquisition protocols

and pre-processing steps, while accounting for possible

clinical confounding effects, may still be necessary to

avoid issues related to reproducibility of PET-derived

features.

Future directions

The field of quantitative PET for predicting cancer treat-

ment outcomes is still in its infancy. Nevertheless, it is a

promising area with great potential for advancing outcome

prediction and personalizing treatment management for

cancer patients. These models could be used to adapt

treatment plans to pre-treatment and intra-treatment

responses of tumors and to design individualized treatment

plans to achieve increased treatment response effectiveness

with fewer side effects. Moreover, the advancement of this

field will significantly benefit from the identification of

novel PET probes of cancer biology as well as new tech-

nological developments in PET hardware and software

tools. The use of complementary imaging information such

as PET/CT or PET/MR will further improve the quality of

extracted image features and lead to a superior ability to

predict which tumors are likely to fail or need alternative

therapy. These model predictions could be used for dose-

painting purposes and/or for adaptation of treatment man-

agement using longitudinal scanning protocols.

Conclusion

The role of imaging as a biomarker of radiotherapy

response is continuously expanding as part of the emerging

of field of radiomics, in which imaging features are cor-

related with biological and clinical endpoints. In this

review, we categorized PET extracted features as static

(time-invariant) or dynamic (time-varying) features

according to the scanning acquisition protocol. Static fea-

tures include SUV descriptors, IVH, morphological and

textural features. Among these features, texture analysis

has received the most attention due to its ability to discern

tumor uptake heterogeneity. Dynamic features are derived

from kinetic analysis and can provide temporal information

about PET uptake biodistribution over time. We provided

an overview of the statistical modeling techniques that

could be applied to integrate these different features for the

purpose of developing robust PET-based models of treat-

ment outcomes and we presented examples using logistic

regression and machine learning algorithms. We also dis-

cussed the application of such PET-based models in dose

painting. The use of multiple tracers or multimodality

imaging such as PET/CT or PET/MR will provide a wealth

of information to improve the prediction power of these

models. Current major issues in this field include stan-

dardization of tumor segmentation and the acquisition

parameter effects on the stability and robustness of these

features for predicting outcomes from one institutional

dataset to another. PET-based predictive modeling is an

evolving area for personalizing cancer treatment that

includes applications such as dose painting and adaptive

radiotherapy. However, the field is still in its infancy and

would significantly benefit from collaborative efforts by

the various different communities of stakeholders in

nuclear medicine, oncology, radiation biology and bioin-

formatics to overcome current challenges and realize its

potential for promoting informed clinical decision making

in oncology.
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