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Abstract Radiomics is an evolving field in which the

extraction of large amounts of features from diagnostic

medical images may be used to predict underlying

molecular and genetic characteristics, thereby improving

treatment response prediction and prognostication and

potentially allowing personalisation of cancer treatment.

There is increasing interest in extracting additional data

from PET images, particularly novel features that describe

the heterogeneity of voxel intensities, but a number of

potential limitations need to be recognised and overcome.

Nevertheless, some early data suggest that extraction of

additional quantitative data may offer further predictive

and prognostic information in individual patients.

keywords Radiomics � Tumour heterogeneity � Positron

emission tomography

Introduction

The term ‘‘radiomics’’ describes the high-throughput

extraction, analysis and interpretation of large amounts of

features from medical images. It is assumed that medical

images contain more information than can be appreciated

by the human eye alone and that additional data extracted

through automated or semi-automated analysis may com-

plement the standard descriptive data or metrics available

to the radiologist or nuclear medicine physician. There is

an assumption that there is a relationship between the

additional quantitative imaging parameters and the tumour

molecular phenotype or genotype, which bioinformatic

approaches may uncover [1–3]. Frequently the additional

data is ‘‘free’’ in that its extraction only requires compu-

tational post-processing of data already acquired for clini-

cal imaging protocols, without the need to resort to more

complicated acquisition protocols or to subject the patient

to additional examinations or visits.

The underlying hypothesis of radiomics is that this

additional information from medical images can be used

alone or in combination with other ‘‘omics’’ data (e.g.

genomics, metabolomics, proteomics) to improve tumour

phenotypic characterisation, treatment prediction or prog-

nostication, to an extent that each patient’s treatment may

be individualised. For example, Segal et al. reported the

extraction of 28 features from contrast-enhanced CT scans

of hepatocellular carcinoma that can be used to reconstruct

78 % of the gene expression profiles associated with pro-

liferation, hepatic synthetic function and prognosis [4].

The interest in radiomics has been heightened by the

knowledge that there is intra- and inter-tumoural genetic

heterogeneity both within and between patients and that the

genetic profile may change over time, for example as a

consequence of therapy [5, 6]. On a simpler level, it is

recognised that malignant tumours show heterogeneity of

molecular and cellular features, including cellular density

and proliferation, necrosis, fibrosis, metabolism, hypoxia,

angiogenesis and receptor expression, factors that have

been independently associated with poor treatment

response and more aggressive tumour behaviour. There is

early evidence that some of these adverse biological
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features may be reflected in medical images. For example,

features extracted from CT scans of patients with non-

small cell lung cancer (NSCLC) have been correlated with

histological features of angiogenesis and hypoxia [7]. Also,

it has been shown in a murine head and neck cancer model

that the distribution of 18F-fluoro-deoxyglucose (18F-FDG)

uptake on PET images is associated with underlying his-

tological features of tumour cell density (areas containing

more tumour cells were compared with areas showing

more stromal tissue and necrosis) [8]. It is postulated that

tumour phenotype (whole tumour or subsegments) could be

characterised and associated with underlying regional

genetic changes within or between tumours [6].

The major advantages of imaging in revealing under-

lying phenotypic and genetic information is that it allows a

whole tumour, and any metastases, to be sampled non-

invasively and repeatedly; in other words, it overcomes the

invasiveness and sampling errors associated with the

examination of biopsy material. Imaging therefore seems to

be in a strong position as regards its potential use, in the

future, to characterise tumours, select patients for optimum

therapy and monitor genetic and biological changes that

may subsequently inform the best management for an

individual patient. PET on its own is unlikely to be able to

meet all these requirements but with the increasing use of

novel tracers exploring different aspects of tumour biology,

in conjunction with the routine use of multimodality

imaging including PET/CT, and more recently PET/MRI, it

is likely to play a large part.

Radiomics and PET

The overall process of radiomics in PET is not significantly

different from that of other imaging modalities. The image

data have to be acquired and then reconstructed; this is

followed by tumour segmentation and feature extraction

and finally the application of informatics analyses and data

mining, without necessarily having a priori hypotheses.

To some extent, we are already beginning to extract

additional data from standard PET images to supplement

routine clinical parameters such as the standardised uptake

value (SUV). Indeed, there are many ways of measuring or

applying corrections to SUVs, and there already exist

published recommendations for standardisation for clinical

trials and clinical practice [9–11]. Examples of the addi-

tional quantitative features now widely reported in the

literature include the metabolically active tumour volume

(MTV) and total lesion glycolysis (SUVmean 9 MTV).

Both of these parameters have yielded better discrimina-

tory, predictive or prognostic information than SUV alone

[12–16] and a recommendation of the published PERCIST

guidelines was that these parameters should be measured as

secondary or exploratory endpoints in future trials to allow

their subsequent evaluation in this role [10].

A large number of alternative parameters that can be

extracted from PET images have also been proposed; these

describe the shape, size and texture or heterogeneity within

a tumour (Table 1) [17–19]. In particular, there has been

recent interest in measuring heterogeneity within medical

images and, following work with morphological imaging

such as CT and MRI [7, 20–22], there are now more and

more reports showing that the measurement of texture or

heterogeneity within PET images may give additional

information on the tumour phenotype compared to simple

SUV-based measurements alone [17, 23–29]. Heterogene-

ity measurements may be temporal, interrogating changes

in signal over time, or spatial, where what is measured are

the relationships between voxels in a static image. The

measurement of spatial heterogeneity has received most

interest.

The methods for measuring image spatial heterogeneity

can be divided into global, regional or local parameters

representing the relationships between voxel intensities.

The most commonly used statistical methods include first-

order (one voxel), second-order (two voxels) and high-

order (three of more voxels) parameters, but other methods

exist, such as model-based, e.g. fractal analysis, or trans-

form-based ones [17–19]. First-order methods are the

simplest, describing global measurements of a tumour or

region of interest (ROI), e.g. mean, minimum, maximum,

range, standard deviation, skewness (asymmetry of the

histogram), kurtosis (flatness of the histogram), uniformity

(regularity) and entropy (randomness) of voxel intensities,

from intensity histograms. First-order parameters do not

convey spatial information from within the tumour because

the above properties are calculated using individual voxel

values, ignoring the spatial relationships between voxels.

By contrast, second- and high-order features describe

properties of the intensities of two or more voxels occur-

ring at separate locations relative to each other and there-

fore maintain spatial information.

Second-order parameters describe local textural features

and can be calculated using spatial grey-level dependence

or co-occurrence matrices (GLCM) [30]. The matrices

determine the frequency with which a voxel of intensity

i finds itself in a certain relationship to another voxel of

intensity j. The most commonly used second-order

parameters based on GLCMs include entropy (randomness

of the matrix), uniformity (orderliness/homogeneity), con-

trast (local variation), homogeneity, dissimilarity (differ-

ence between elements in the matrix) and correlation (grey-

level linear dependencies).

High-order parameters can be calculated using neigh-

bourhood grey-tone difference matrices (NGTDMs) [31].

Local textural features calculated from NGTDMs relate to
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Table 1 Common imaging heterogeneity parameters

Parameters Order, (matrix), type Description

Mean [19] First order, global Average of all pixel intensities

Median [19] First order, global Half of the voxels have value less than or equal to median

Skewness [19] First order, global Measure of asymmetry and deviation from a normal distribution. Skewness [0: right

skewed, most values concentrated on the left of the mean. Skewness\0: left skewed,

most values concentrated on the right of the mean. Skewness = 0: symmetrical

distribution around the mean

Kurtosis [19] First order, global Describes ‘‘peakedness’’ of a distribution

Kurtosis [3: sharper than a normal distribution, with values concentrated around the

mean and thicker tails. This means high probability for extreme values

Kurtosis \3: flatter than a normal distribution with a wider peak. The probability for

extreme values is less than for a normal distribution, and the values are spread more

widely around the mean

Kurtosis = 3: normal distribution

Uniformitya [19] First order, global Sum of squared elements in the ROI

Entropya [19] First order, global Measures texture randomness or irregularity

Homogeneity [30] Second order, (GLCM),

local

Measures the closeness of the distribution of elements in the matrix to the diagonal

Uniformitya [30] Second order, (GLCM),

local

Measures the sum of squared elements in the matrix. Uniformity = 1 for a constant

image

Contrasta [30] Second order, (GLCM),

local

Measures contrast or local intensity variation and favours contributions away from the

diagonal

Entropya [30] Second order, (GLCM),

local

A measure of randomness. Inhomogeneous textures have low entropy, whilst

homogeneous textures will have high entropy

Short zone emphasis [33] High order, (GLSZM),

regional

Measures the distribution of small zones. The value is large for fine textures

Intensity non-uniformity

[33]

High order, (GLSZM),

regional

Measures the similarity of grey level values throughout the image. It is small if the grey

level values are alike throughout the image

Zone percentage [33] High order, (GLSZM),

regional

Measures the homogeneity and the distribution of zones of an image in a specific

direction. It is largest when the size of the zones is 1 for all grey levels

Intensity variability [33] High order, (GLSZM),

regional

Measures the similarity of grey level values throughout the image. It is small if the grey

level values are alike throughout the image

Size zone variability [33] High order, (GLSZM),

regional

Measures the similarity of the size of zones throughout the image. It small if the zone

sizes are alike throughout the image

Short run emphasis [32] High order, (GLRLM),

regional

Measures the distribution of short runs. It depends on the occurrence of short runs. The

value is expected to be large for fine textures

Grey-level non-

uniformity [32]

High order, (GLRLM),

regional

Measures the similarity of grey level values throughout the image. The value is small if

the grey level values are similar in an image

Run percentage [32] High order, (GLRLM),

regional

Measures the homogeneity and the distribution of runs of an image in a specific

direction. It is largest when the length of runs is 1 for all grey levels in a specific

direction

Intensity variability [32] High order, (GLRLM),

regional

Measures the similarity of grey level values throughout the image. It is small if the grey

level values are alike throughout the image

Run length variability

[32]

High order, (GLRLM),

regional

Measures the similarity of the size of zones throughout the image. It is small if the run

lengths are alike throughout the image

Coarseness [31] High order, (NGTDM),

local

Based on differences between each voxel and the neighbouring voxels in adjacent

image planes, it measures the granularity within an image. Described as the most

fundamental property of texture

Complexity [31] High order, (NGTDM),

local

A texture has high complexity if the information content is high and there are many

grey values present. Complexity is the sum of pairs of normalised differences between

intensity values

Contrasta [31] High order, (NGTDM),

local

This value increases with the amount of local variation in intensity. An image is said to

have a high level of contrast if areas of different intensity levels are clearly visible.

Thus, a high contrast means that the intensity difference between neighbouring

regions is large. This is usually the case when the dynamic range of the grey scale is

large or when it is stretched

Clin Transl Imaging (2014) 2:269–276 271

123



differences between each voxel and its neighbouring

voxels in adjacent image planes, and are thought to clo-

sely resemble the human experience of the image.

Examples include the parameters coarseness, contrast and

busyness. Coarseness describes the granularity of an

image and is considered one of the most fundamental

texture properties. Contrast relates to the dynamic range

of intensity levels in an image and the level of local

intensity variation, while busyness relates to the rate of

intensity change within an image [31]. Regional param-

eters describe run-lengths of consecutive voxels, or zones

with similar intensities, such that short run-lengths with

similar intensities give fine texture and long runs with

differing intensities give coarse texture. Examples include

short run (or small zone) emphasis, long run (or large

zone) emphasis and run length (or size zone) variability

[32, 33].

Technical factors

Textural features can vary depending on image acquisition

and reconstruction parameters in PET. Indeed, different

textural features have been found to show different vari-

ability when varying the acquisition method (2D vs. 3D),

matrix size (128 9 128 vs. 256 9 256), reconstruction

algorithm and post-reconstruction filter [34]. For example,

features with \5 % variability included entropy and uni-

formity (first order), maximum correlation coefficient

(second order) and low-grey level sum emphasis (high

order), whereas the majority of calculated features (40 out

of 50) were found to show [30 % variability; these

included coarseness, contrast and busyness (high order). A

similar study examined the effects on smoothing, ROI

segmentation thresholds and bin widths on the precision of

a number of first-, second- and high-order features [35]. It

was concluded that changes in smoothing and ROI seg-

mentation thresholds had relatively small effects and that

GLCM and grey level run length (GLRL) methods were

the most robust. By contrast, bin width had larger effects

on precision and it was suggested that a normalisation

process might reduce this effect.

Image noise can also adversely influence the discrimi-

natory ability of textural analysis but this can depend on the

type of image [36]. For gradually changing images, the

discriminatory performance is poor for low noise levels

whilst images with greater differences are more robust until

higher levels of noise are present.

The majority of clinical studies that measure tumour

heterogeneity with PET or other imaging modalities use

operator-defined or threshold-defined ROIs for tumour

segmentation. However, it has been argued that a fuzzy

locally adaptive Bayesian segmentation approach more

accurately defines the tumour volume, particularly for

heterogeneous tumours, and could improve the prognostic

evaluation [37–39].

Whilst it is attractive to hypothesise that image hetero-

geneity may reflect underlying tumour biology there is no

evidence of a direct relationship between 18F-FDG PET

images and histological features in humans. Given the

microscopic nature of tumour biology and the tumour

microenvironment (e.g. angiogenesis, hypoxia, prolifera-

tion, necrosis etc.), the macroscopic scale of the PET image

(e.g. 0.5 cm voxels) is unlikely to allow a direct reflection

of the tumour biology although it has been hypothesised

that 18F-FDG heterogeneity in NSCLC may reflect the

distribution of hypoxic cells associated with higher

expression of glucose transporters [40]. Exploring hetero-

geneity within tumours also has the potential to reveal

underlying aspects of tumour physiology and biology. For

example, measurement of spatial heterogeneity of kinetic

parameters of 18F-FDG uptake within a number of tumours

(predominantly NSCLC) segmented into quartiles showed

variability across quartiles leading to the hypothesis that

the tumour glucose phosphorylation rate is independent of
18F-FDG delivery and transport [41].

Measurement of heterogeneity within images requires

the inclusion of a reasonable number of voxels in a ROI, so

as to be able to measure some of the textural features. It has

been postulated that some heterogeneity parameters may be

surrogates for size below a certain volume. Brooks and

Grigsby, using probability theory, calculated that mea-

surements from cervical tumour volumes of \45 cm3 can

be very sensitive to size, and may reflect size rather than

Table 1 continued

Parameters Order, (matrix), type Description

Busyness [31] High order, (NGTDM),

local

A busy texture is one in which there are rapid changes in intensity from one pixel to its

neighbour; that is the spatial frequency of intensity changes is very high. A higher

value of busyness would tend to emphasise the frequency of spatial changes in

intensity values

GLCM grey level co-occurrence matrix, GLSZM grey level size-zone matrix, GLRLM grey level run length matrix, NGTDM neighbourhood grey

tone difference matrix, ROI region of interest
a Some parameters carry the same name but belong to different orders and are calculated by different formulae
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underlying heterogeneity as measured by the parameter,

local entropy [42]. The calculated minimum volume may

vary with different tumour datasets, scanner resolution and

voxel size and dynamic range of intensities in tumour

voxels, but it is nevertheless recommended that this cal-

culation be made so that tumours below a minimum vol-

ume may be excluded from analyses. This dependence on

size also means that it may not be possible to perform

analyses of heterogeneity within different parts of a tumour

or small structures such as lymph nodes. For example,

differences in entropy between the edge and core of lung

cancers have been reported to show an inverse correlation

with survival on CT scans [6], but this type of analysis may

not be possible with lower-resolution PET data.

A detailed study of the robustness of a number of first-,

second- and high-order features was carried out on 18F-

FDG PET images of three tumour types, namely NSCLC,

metastatic colorectal cancer and breast cancer, and showed

further potential limitations. A number of features were

correlated with each other, with tumour volume or with

standard indices such as SUV [43]. As expected, some

textural features were more sensitive than SUVmax to

segmentation methods, but less sensitive than SUVmean. It

was concluded that none of the first-order features and only

half of the other textural features were robust to the tumour

segmentation method. It was also recommended that at

least 32 grey levels should be used for resampling to avoid

spurious correlations with SUV.

Another important factor when using any imaging

parameters for response assessment is the reproducibility

of the measurements. For first-order parameters, good

test–retest reproducibility and reliability were found for

area under the SUV volume histogram, although skewness

and kurtosis were less robust [44]. In a study of 18F-FDG

PET scans in patients with oesophageal cancer repeated

within 4 days, local heterogeneity parameters including

entropy and homogeneity showed better reproducibility

than did SUV measurements (2 vs. 5 %), and a number of

regional heterogeneity features were found to be similar

to SUVs [45]. The same group examined the robustness

of textural features of 18F-FDG PET in oesophageal

cancer to the partial volume effect and segmentation

method and the ability to predict treatment response. They

found that local features (e.g. entropy, homogeneity,

dissimilarity) and regional features (e.g. zone percentage)

were robust and maintained differentiation power for

response prediction [46]. A further study has also shown

moderately good test–retest and inter-observer stability of

features, including first-order, intensity-volume histogram,

geometric and textural features in 18F-FDG PET [47]. We

do not know how sensitive textural feature analysis is to

measurements from scans performed at different times

post injection. The accuracy and precision of texture

analysis may therefore depend on individual scan acqui-

sition and image reconstruction protocols as well as image

quality parameters such as noise, resolution and motion

artefacts. The technical features that may affect texture

analysis are obviously important considerations when

designing studies, particularly multicentre studies in

which the methodology has to be carefully evaluated and

standardised.

Clinical applications

Characterisation and segmentation

High-order textural features including coarseness, contrast

and busyness have been used to differentiate head and neck

primary and nodal tumours from normal tissues [48] and in

a subsequent study by the same group, ROIs were seg-

mented using textural features, an approach that showed

feasibility for improving accuracy of radiotherapy planning

of head and neck tumours [49]. Model-based fractal

methods have also been investigated as a means of char-

acterising pulmonary nodules on 18F-FDG PET images. A

significant difference was found between benign and

malignant nodules for fractal indices as well as SUVmax.

However, SUVmax was significantly correlated with

tumour size whereas fractal indices were not [27]. In some

tumour types, such as peripheral nerve sheath tumours, it

has proved possible to improve characterisation between

benign and malignant lesions through qualitative scoring of
18F-FDG heterogeneity [50].

Fig. 1 ROC curves for baseline 18F-FDG PET primary tumour

coarseness, contrast, busyness, and complexity for identification of

responders vs. non-responders by RECIST at 12 weeks in patients

treated with chemoradiotherapy for NSCLC. [This research was

originally published in JNM [28]. � by the Society of Nuclear

Medicine and Molecular Imaging, Inc.] (color figure online)
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Prediction and prognosis

A number of studies have demonstrated the predictive and

prognostic ability of textural parameters derived from 18F-

FDG PET images and have shown these parameters to be

superior to standard ones such as SUV. This applied to

studies in sarcomas [23], head and neck cancer [24],

oesophageal cancer [17, 51] and lung cancer [25–28], Fig.

1. Conversely, textural features were not able to predict

nodal status or outcome in cervical cancers [52, 53]. Some

initial work using 18F-fluorothymidine PET in breast can-

cer has shown good test–retest repeatability in the evalu-

ation of some features. In addition, tumours with fewer

highly proliferating cells tended to respond less well to

chemotherapy and a decrease in heterogeneity was found in

the majority of responders at 1 week [54].

Radiogenomics and PET

Whereas there are increasing numbers of studies investi-

gating radiogenomics with CT and MRI in oncology, there

are relatively few investigating radiogenomics with PET.

Nair et al. extracted 14 SUV-based uptake features from
18F-FDG PET scans of patients with resected NSCLC and

showed associations with distinct genes and gene signa-

tures; they also showed a multivariate 18F-FDG uptake

feature to be prognostic [55]. These authors concluded that

the prognostic models they evaluated could increase

understanding of 18F-FDG as a biomarker at the genomic

level. A radiogenomics strategy has also been tested in

patients with NSCLC linking gene expression and 180

image features from PET and CT images. A number of

metagenes could be predicted from CT features, and CT

features and PET SUV could be predicted using the

metagenes [56].

Conclusion and future directions

Radiomics with medical imaging and PET are in an early

phase of study and there are technical issues that still need

to be further developed, evaluated and addressed. How-

ever, if these challenges for technical validation can be

overcome, it is expected that radiomic data, alone or in

combination with other-omic data, may lead to a per-

sonalised approach to cancer management in the future.

With the growth of hybrid imaging such as SPECT/CT,

PET/CT, and more recently PET/MRI, the volume of

potentially useful image parameters and metrics available

is likely to increase. With the wealth of additional infor-

mation that is available but unused in medical images, a

radiomics approach whereby additional data are extracted

automatically and then subjected to bioinformatic analysis

may be a way forward to achieve better tumour segmen-

tation, definition, characterisation, prediction and prog-

nostication. This approach, in combination with the use of

molecular analysis of tumours that is now becoming rou-

tine in some cases for treatment stratification, may con-

tribute to improvements in cancer care.
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