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The role of PET quantification in neurological imaging:
FDG and amyloid imaging in dementia

Karl Herholz

Received: 2 July 2014 / Accepted: 24 July 2014 / Published online: 16 August 2014

� Italian Association of Nuclear Medicine and Molecular Imaging 2014

Abstract Positron emission tomography (PET) with FDG

or amyloid tracers is an important diagnostic tool, which

also provides imaging biomarkers for patient selection in

therapeutic trials in Alzheimer’s disease. PET is also a

quantitative technique with the potential to measure disease

severity and progression. Limitations in spatial resolution

result in partial volume effects that can be minimized by

correction algorithms and image reconstruction with reso-

lution recovery. Quantitative local rates of cerebral glucose

metabolism can be calculated from FDG uptake. Reaching

the highest degree of accuracy still requires blood sam-

pling, while bloodless techniques have improved and can

provide useful approximations. Advanced image process-

ing techniques allow semiautomatic standardised assess-

ment of diagnostic metabolic patterns and disease severity.

Amyloid imaging provides excellent categorical classifi-

cation of fibrillary amyloid deposition, but quantitative

measures derived from amyloid tracer uptake are less well

understood.
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Introduction

Quantitative measures in medicine are mostly used to

determine whether a physiological parameter is within

normal range, or to provide an estimate of the severity of

an abnormality. They are also useful for longitudinal

assessment (monitoring) of disease progression or thera-

peutic effects. For all this to be possible, comparability

between individuals is needed. Measurement error and

bias, as well as differences due to variations in the actual

implementation of measurement methods should be small

as compared to the spread of the biological signal that is

being measured.

Positron emission tomography (PET) is an imaging

technique that can provide a large number of quantitative

measures simultaneously as voxels within a three-dimen-

sional image data set. Primarily, the signal reflects the local

activity of a given radioactive tracer at each image voxel.

To qualify as a quantitative biomedical technique, these

values need to be converted into a physiologically relevant

parameter in a way that is comparable between individuals.

Ideally, they should provide a measure of an established

physiological parameter in units that allow direct com-

parison with measures of the same physiological parameter

obtained by other techniques and such measurements are

often referred to as ‘‘fully quantitative’’.

The following overview describes the state of the art and

the limitations of the main quantitative PET techniques that

are clinically available for assessment of dementia.

Quantitative measures provided by PET

Due to the physical characteristics of the paired 511 keV

annihilation photons produced by positrons, PET provides
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superior sensitivity and accuracy as compared to most

other imaging methods, including magnetic resonance

imaging (MRI) and single-photon emission computed

tomography. With proper calibration and corrections for

attenuation, scatter and random coincidences, PET images

provide quantitative data of local tracer activity in absolute

units, i.e., kBq/ml.

With PET/CT scanners and most dedicated brain PET

scanners corrections for attenuation are based on measured

attenuation maps and are highly accurate. Various tech-

niques have been implemented by manufacturers to correct

for scatter and random events, and they tend to be some-

what dependent on how well the actual scanning circum-

stances match the underlying assumptions. At its current

stage of development, MRI/PET, while providing attractive

features for direct data co-registration and even simulta-

neous acquisition, has yet to reach the same level of

accuracy. This is because routine MRI techniques do not

provide a bone signal that can be used for attenuation

correction [1, 2]. It is hoped that ongoing technical

developments will eventually overcome this limitation [3].

Initially, filtered back projection was the standard

technique for the reconstruction of PET images from

measured coincidence events. With the improved calcula-

tion capacity of modern computers, iterative reconstruction

algorithms that can accommodate most accurate correc-

tions and various detector geometries have become the

usually preferred option [4].

The spatial resolution of PET is intrinsically limited by

some physical factors, including the path length of posi-

trons in tissue before annihilation, the minor deviation of

the annihilation pair angle from precisely 180�, and the

detector size. Dedicated research brain scanners can reach

approximately 2 mm resolution [assessed as the full width

of measured activity at half maximum (FWHM) from a

point source], while most current scanners in clinical use

provide a spatial resolution in the order of 5 mm. Because

of the potentially large differences in tracer activity

between brain regions and, for most tracers, generally

between grey and white matter, there may be substantial

spill-over of signal between adjacent brain regions. This is

known as the partial volume effect (PVE), and it can

impair accurate assessment of regional activity in areas

that are smaller than twice FWHM resolution [5]. Even in

normal subjects, cortical thickness is in the order of

3–4 mm or below, while in patients with atrophic brains

(as frequently encountered in neurodegenerative disease) it

can be reduced to 1 or 2 mm in some areas [6]. For tracers

with high cortical activity, this can lead to substantial

underestimation of cortical activity, while for tracers with

high accumulation in white matter and low cortical

activity, overestimation of cortical activity is to be

expected.

Multiple algorithms have been proposed for partial

volume correction (PVC) [7]. For a given set of brain

regions, the extent of mutual spill-over can be estimated

quite accurately from their geometry and the width of the

point-spread function, if one assumes homogeneous dis-

tribution of activity within these regions [8]. Other algo-

rithms aim to correct the estimated cortical activity [9] and

may involve iterative deconvolution [10]. They typically

require accurate segmentation of cortex from white matter

by co-registered MRI and often assume homogeneous

tracer activity within white matter. Unfortunately, these

algorithms are typically quite sensitive to small deviations

from accurate co-registration and segmentation [11]. The

latter poses a considerable challenge to MRI; especially, in

patients with cortical atrophy, in whom it would be most

needed, while the spatial resolution and signal strength

even of 3 T MRI scanners do not usually reach the required

accuracy of 1 mm or better in individual subjects under

clinical conditions. Correction algorithms are likely to

reduce the PVE-induced bias in regional activity in group

studies, but there is insufficient evidence that they improve

quantification accuracy in individual scans.

Iterative reconstruction also opens up the possibility of

recovering spatial resolution and thus of providing local

values that are closer to actual activity even in very small

regions or thin cortex [12]. Like most PVC algorithms,

such approaches also increase measurement noise, unless

they are combined with particular noise-reduction filters.

Although it is difficult to assess the actual improvement of

quantitative accuracy obtained through resolution recovery,

simulation studies suggest that resolution recovery may be

as efficient as post-reconstruction PVC, without depending

on accurate segmentation and co-registration.

Quantification of cerebral glucose metabolism by FDG

PET

The interest in cerebral glucose metabolism is based

mainly on its relationship with synaptic activity. Oxidation

of glucose involves interaction between neurons and

astrocytes [13] and it provides the energy that is required to

maintain the ion gradients needed for neuronal activity. It

is also linked, via the citrate cycle, to the recycling of

glutamate, which is the main excitatory neurotransmitter.

Because of these mechanisms, it is correlated with synaptic

function, but there is no firm basis to support the translation

of quantitative measures of glucose metabolism into

quantitative measures of synaptic function.

FDG is transported across the blood–brain barrier (BBB)

and into brain cells by glucose transporters and then

phosphorylated by hexokinase in the same way as glucose.

Because phosphorylation is essentially irreversible and
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phosphorylated FDG becomes trapped in brain tissue, the

cerebral metabolic rate of glucose (CMRglc) can be cal-

culated by the following equation:

CMRglc ¼ ðCPLglc=LCÞ � Ki ð1Þ

where CPLglc is the plasma concentration of unlabelled

glucose, LC is the ‘‘lumped constant’’ that provides an

adjustment for the differences in the affinities of glucose

and FDG for the transporter enzymes and hexokinase, and

Ki is the rate of unidirectional transfer of FDG from blood

to brain.

Acquisition of an input function, which describes tracer

delivery by blood plasma to the brain, is a general

requirement for accurate measurement of CMRglc. It can be

achieved by taking multiple arterial blood samples (typi-

cally approximately 20 samples) over the entire tracer

uptake period (typically approximately 60 min). As this is

an invasive procedure associated with considerable dis-

comfort to the patient and a small risk of serious compli-

cations, it is usually avoided unless absolutely necessary,

and surrogate techniques to obtain an approximate input

function are used. Options include sampling from a dorsal

hand vein that was first ‘‘arterialised’’ by heating of the

hand, use of population-derived standard input functions

scaled to a small number of venous blood samples, or use

of an image-derived input function. However, the accuracy

of these techniques is difficult to verify and likely depends

on details of the technical implementation.

By fitting rate constants K1 for tracer transport from

blood to brain, k2 for the reverse transport, and k3 for the

phosphorylation step, using kinetic tissue activity measured

by PET and the input function according to the standard

compartmental model of brain glucose metabolism [14], it

is possible to obtain a direct calculation of Ki = K1 9 k3/

(k2 ? k3). Alternatively, the Patlak plot approach can be

used to measure Ki without making assumptions about

metabolic compartments, although kinetic PET data and an

input function are still required [15].

Under most circumstances, the transfer rates of glucose

(and FDG) across the BBB and the phosphorylation rates

are correlated. Thus, at high metabolic rates both are

increased, while both are reduced if glucose metabolism is

reduced. Under these conditions, brain uptake of FDG at

20–60 min after intravenous injection is approximately

proportional to its unidirectional transfer rate Ki. Thus, Ki

can be approximated by a single measure of FDG activity

in tissue at a specific time interval after injection (CTFDG)

and dynamic measurement of uptake over the entire

accumulation period is not required. However, we still

need an estimate of the cumulative input (CINP) calculated

from an actually measured input function and including a

correction based on estimated transport rates as specified

by Hutchins et al. [16]:

CMRglc ¼ ðCPLglc=LCÞ � ðCTFDG=CINPÞ ð2Þ

The input function term in the Patlak plot and in Eq. (2)

is based on the integral of the arterial input function, which

is less sensitive to errors in timing and height of the peak

immediately after injection than compartmental fitting of

individual rate constants. Thus, reasonably good approxi-

mations of the input function terms can be achieved by

population-based or image-derived input function estimates

[17, 18]. Still, some blood sampling is usually required for

proper scaling.

Because of the resources needed for the handling of

blood samples and the uncertainties associated with sur-

rogate techniques, there has always been a strong motiva-

tion to get rid of this approach entirely in clinical practice.

One alternative approach is based on the close relationship

between CINP and the injected dose, normalised by body

weight (BW), which is used to calculate standardised

uptake values (SUVs) [19]. In subjects without severe renal

impairment or other severe metabolic abnormalities CINP

is approximately proportional to the injected dose (ID)

relative to the BW. With LC also being a constant, the SUV

corrected for blood glucose levels, SUVglc, is thus

approximately proportional to CMRglc:

SUVglc ¼ CPLglc � SUV ¼ CPLglc � CTFDG=ðID=BWÞ
ð3Þ

Most commonly, it is assumed that some brain region or

some measure derived from global FDG brain uptake can

be used as a reference and that we are only interested in

regional metabolism relative to that reference. If this is the

case all systemic parameters, such CPLglc, CINP, ID and

BW, are cancelled out because they are constants related to

subjects rather than regions. Assuming that the LC also is a

constant within each individual across the entire brain, it

too is cancelled out and we are left with CTFDG as direct

measure of relative CMRglc. Thus, a static image of FDG is

actually a good approximation of the regional distribution

of CMRglc relative to a reference region in each individual.

Quantification of FDG PET studies in dementia

Ideally, it would be preferable to obtain fully quantitative

values of CMRglc (according to Eqs. 1, 2) for dementia

studies. However, even with the most advanced data

acquisition methods it has so far not been possible to

eliminate uncertainties associated with the LC [20]. In

addition, the coefficient of variation (among individuals)

associated with regional CMRglc is typically twice as large

as the variation coefficient of regional CMRglc relative to a

reference region. Thus, in most studies, even when full

quantification has been done, the final statistical analysis is
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often based on relative CMRglc only in order to maximise

the power of the study. This raises the question of whether

the effort and resources required to obtain fully quantitative

values is justified.

The main problem with relative values is the fact that a

reference is required, either a brain region or some other

value extracted from the brain data. Some regions in Alz-

heimer’s disease (AD) brains, including the cerebellum,

pons, putamen, visual cortex and motor cortex, are clearly

less affected than the association areas and have therefore

been used, either as single regions or as a composite [21],

as reference. The pons has been identified in one study [22]

as the region that is least affected even at late stages of AD,

but it is relatively small and located deep in the skull and is

thus subject to potentially high measurement variation.

Metabolism in the visual cortex depends very much on the

state of the subject (e.g., eyes open or closed) during tracer

uptake, which is difficult to control precisely and therefore

the occipital lobe is one of the brain areas with the highest

interindividual variation. The cerebellum has often been

used, but in moderate AD cases it is possible to detect

cerebellar diaschisis even visually, when the observation of

substantial cortical asymmetry points to the presence of

functional cerebellar impairment [23]. The motor cortex is

often spared at early stages, but not at later stages. The

putamen appears to be unimpaired functionally, but it is

affected pathologically by early deposition of amyloid.

Global cortical metabolism, the default option in some

statistical parametric mapping programs, would be a suit-

able reference only if the region affected by metabolic

decline was small enough to have a negligible effect on

global metabolism, which clearly is not the case in AD.

Alternatively, one could extract some upper quantile from

the distribution of cortical metabolism under the assump-

tion that the only pathological change to be expected is a

decline and that a small proportion of brain areas (wherever

they are located) will be preserved in AD. These areas

could then be identified by histogramming or by selection

of brain areas that appear to be relatively increased when

using global intensity normalisation. This approach is

reasonable and has been shown to provide superior sensi-

tivity for detection of abnormal areas as compared to global

intensity normalisation in AD [24].

Despite their limitations, reference tissue techniques

have worked generally well for analysis of regional meta-

bolic changes in AD, demonstrating a close relationship

with cognitive symptoms and dementia severity, and even

allowing robust multicentre analyses [25]. However,

identification of sufficiently robust reference regions is

more difficult or impossible in certain other diseases that

can cause dementia, most notoriously in microcerebro-

vascular disease, which affects all parts of the brain and

causes a global decline of metabolism [26]. Thus, full

quantification of CMRglc appears to be required for proper

assessment of the effects of cerebrovascular disease [27].

Also, pervasive diseases, such as HIV encephalopathy or

multiple system atrophy, or impairment secondary to

metabolic disorders or chemotherapy do not allow relative

quantification of CMRglc because of the lack of sufficiently

robust reference regions. The lack of full quantification has

also caused a controversy with regard to the interpretation

of FDG PET scans in Parkinson’s disease [28], as puta-

minal metabolism appears to be relatively increased (which

could potentially be secondary to a lack of inhibitory

dopamine effects in the putamen), and it is therefore dif-

ficult to assess the significance of relative cortical meta-

bolic reduction.

The regional pattern of metabolic reductions is very

similar to the regional distribution of cortical atrophy in

AD. Most studies suggest that metabolic reduction pre-

cedes atrophy, while in patients with manifest dementia

both are typically present, raising the question of the

degree to which apparent metabolic reduction is secondary

to PVEs. The issue has been addressed by studies using

PVC, and some have come to the conclusion that metabolic

reduction in neocortical association areas exceeds the

amount that can be explained by atrophy, while the reverse

may be true in the hippocampus, where atrophy is typically

more prominent than metabolic reduction [29]. The issue

has still not been completely settled because most PVC

techniques are very sensitive to the accuracy of MRI seg-

mentation, which is difficult in atrophic cortex, and to

underlying assumptions about tissue homogeneity. Data

acquired on a high-resolution scanner suggest that meta-

bolic reduction in the hippocampus, too, may exceed the

effects explained by atrophy [30]. Fortunately, these

uncertainties are of little relevance for the practical use of

FDG PET in AD because metabolic impairment and atro-

phy are both indicators of neurodegeneration and their

combination increases the sensitivity of FDG PET. Thus,

PVC would be of interest only in studies aiming at

obtaining accurate quantification of metabolism in

remaining tissue and separation of pathophysiological

events (e.g., for accurate distinction between true meta-

bolic deficits and age-related atrophy), while it is usually

not required (and may even be counterproductive) when

using FDG PET as a diagnostic tool and indicator of dis-

ease severity.

There are typical regional patterns of metabolic abnor-

malities associated with AD and other neurodegenerative

diseases. Pattern recognition techniques can therefore be

used to extract these patterns and to quantify their salience.

This approach can be based on summing or averaging

indices that measure deviation from normal (e.g., z or

t scores) in brain regions that are typically affected in AD

[31, 32], or by multivariate techniques employing principal

324 Clin Transl Imaging (2014) 2:321–330

123



component analysis, independent component analysis, or

machine learning [33–36]. Some of these measures have

already been validated for use in multicentre studies (e.g.,

NEST-DD, ADNI) [37, 38]. They can also provide mea-

sures of clinical disease progression (Fig. 1). However, a

recent comparative analysis of such numerical disease

indicators derived from FDG PET also demonstrated some

variation among these indicators with respect to sensitivity

and specificity, especially at the clinical stage of mild

cognitive impairment (MCI) [39]. Quantitative scores

derived from FDG PET are potential imaging biomarkers

for clinical trials [40], although they have not yet been

accepted by regulatory authorities as criteria for inclusion

of patients or as primary outcome markers in clinical trials.

Amyloid deposition

Fibrillary plaques containing amyloid beta are an essential

feature for a definitive pathological diagnosis of AD [41].

Amyloid PET provides in vivo confirmation of amyloid

beta deposition with the aim of enhancing the accuracy of

clinical diagnosis [42]. In contrast to FDG PET, amyloid

PET is not closely related to clinical features of the disease

but provides independent information on molecular

pathology. Deposition of beta-amyloid plaques in the

human brain is related to age and genetic factors, and may

begin several decades before the manifestation of dementia

[43]. Thus, in old age a significant proportion of individ-

uals who are cognitively healthy or who may be suffering

from non-AD brain disorders may have amyloid beta pla-

ques in their brains and thus exhibit a positive amyloid

scan. This raises the issue of the clinical utility of positive

scans [44], and also the question of whether quantification

of amyloid PET could provide information about the dis-

ease stage and distinguish between individuals with high

and low amyloid load, presuming that the former would be

associated with manifest AD, while the latter may be

associated with at an early, asymptomatic stage. So far, this

assumption does not seem to be the case (Fig. 2).

Histological quantification of amyloid load is usually

based on the relative area of plaques stained histochemi-

cally within cortical tissue sections. Within individuals, the

regional distribution of histological measures of amyloid

load corresponds well with amyloid tracer binding [45].

However, across individuals amyloid load does not trans-

late directly into the intensity of tracer uptake with cur-

rently available PET amyloid ligands. For instance, Clark

et al. [46] demonstrated an excellent association between

postmortem and amyloid PET main diagnostic categories,

but only a moderate overall correlation between florbetapir

SUV ratios (SUVRs) and plaque density on immunohis-

tochemistry (r = 0.64; Fig. 3). This correlation was mainly

dependent on the comparison between subjects with

probable or definite AD and the rest, while it was very low

(ns) within each of these subgroups (r = 0.28 in subjects

with a pathological diagnosis of no or possible AD,

r = 0.22 in probable or definite AD).

Fig. 1 Regression plot demonstrating the association (r = 0.47) of

changes in cognitive impairment (ADAS-cog score) and metabolic

impairment (FDG PET score) over 24 months in patients with MCI,

as described by Herholz et al. [76]
Fig. 2 Progression to AD in patients with MCI, as described by

Nordberg et al. [77]. While none of the patients with a negative scan

progressed to AD in this cohort, the probability of progression did not

differ between those who showed high cortical 11C-PIB binding when

compared with those with low abnormal binding
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Attempts to interpret quantitative amyloid tracer binding

in physiological terms are also compromised by the fact

that binding is due to the physicochemical properties of the

amyloid beta-sheet formation [47] and, in contrast to

neuroreceptor studies, does not relate to a single receptor.

A group at Karolinska [48] described at least three binding

sites with different properties, and recent data suggest that

binding involves a ganglioside-amyloid beta complex [49].

Possibly tracer binding to enzymes, such as oestrogen

sulfotransferase [50], also contribute to a non-specific

signal background.

Non-specific binding to white matter, which may par-

tially due to beta sheet formation of basic myelin protein

[51], also exhibits some variation which may be related to

blood flow and other non-specific factors [52]. The varia-

tion may occasionally cause problems with visual image

reading; loss of contrast between the non-specific white

matter signal and cortex is the main feature indicating

cortical amyloid deposition. High white matter uptake

makes quantification difficult due to PVE with substantial

spill-over of white matter signal to grey matter and

resulting overestimation of grey matter binding. Studies

have shown that this may cause substantial bias [53], and

that accurate correction is difficult. Thus, it might be

expected that next-generation amyloid tracers, such as 18F-

NAV4649 (alias AZD4694) [54], which suffer much less

from non-specific white matter binding, will provide more

accurate quantification for precisely that reason. Whether

they may actually overcome the current lack of a

quantitative relationship between in vivo tracer binding and

actual amyloid load, as discussed above, remains to be

determined.

Tracer binding is usually measured as SUVRs or as

distribution volume ratios (DVRs) determined by com-

partmental modelling or Logan plot [55]. When compared

with compartmental modelling and metabolite-corrected

arterial input function, simplified reference tissue models

provided superior test–retest accuracy while avoiding bias

[56, 57]. Static uptake ratios (SUVRs) compared well with

respect to test–retest, but are subject to a systematic bias

that depends on measurement time. Correlations between

cortical SUVRs (static scans) and DVRs (dynamic scans)

for amyloid tracers are generally high in cross-sectional

studies [56, 58, 59], and assessment of SUVRs has there-

fore generally been accepted as a practical standard for the

use of PET as diagnostic biomarker that does not require

dynamic scanning [60]. However, this notion has recently

been challenged, especially when using amyloid PET for

monitoring of disease progression, because SUVRs are

likely to be biased by changes in regional blood flow [61].

The cerebellum is often used as a reference region, both

for static scans (SUVRs) and for calculation of DVRs from

dynamic studies without blood sampling. This is based on

the observation that, though there may be amyloid depo-

sition in AD, such deposition does not generate fibrillary

plaques and therefore does not bind amyloid tracers spe-

cifically [62]. Ideally, the cerebellar cortex is used also in

order to avoid the non-specific tracer binding in cerebellar

white matter, but this does require accurate placement of

cortical cerebellar ROIs, which is difficult without coreg-

istered MR scans. The pons or whole cerebellum, both of

which include some non-specific white matter signal, have

therefore been used instead in some studies. Actual SUVR

values, and thus thresholds for discrimination between

positive and negative scans, depend on the choice of the

reference region while the correlation between measures

derived from any of these reference regions is usually very

good [63]. Accuracy of analysis also depends upon whether

template-based cortical regions are defined by matching

them directly to amyloid PET, or whether they are adjusted

by individually coregistered and segmented MR scans. The

latter is preferred for quantitative research [64], but novel

adaptive template methods used with PET only may also

provide accurate results [65].

The literature comparing in vivo binding among various

tracers with high affinity for amyloid is still limited, but

publications generally demonstrate a very close relation

with correlation coefficients above 0.8 of relative uptake

values [66, 67]. As is to be expected, tracers having similar

affinity for amyloid and tau deposits, such as 18F-FDDNP,

produce different results with respect to regional distribu-

tion and uptake values [68]. Developing specific tracers for

Fig. 3 Scatter plot of cortical 18F-florbetapir SUVR versus cortical

amyloid plaque load determined by immunohistochemistry in the

post-mortem validation study by Clark et al. [46]. Most data points

are located in the left lower or right upper quadrant, demonstrating

excellent qualitative correspondence and absence of quantitative

correlation within the quadrants
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tau imaging remains a considerable challenge because of

the physicochemical similarities of beta sheets and the

much higher abundance of amyloid [69].

Amyloid tracers are also being used to assess the effect

of therapeutic interventions [70]. However, interpretation

of such studies is difficult given the lack of a reliable

quantitative relationship between tracer binding and amy-

loid load. In addition to the variation in physicochemical

properties of amyloid among individuals and during pro-

gression of the disease, uptake values may potentially be

biased by limitations of blood flow and other factors

affecting tracer delivery to tissue. Therefore use of kinetic

modelling with calculation of DVRs is regarded as the

most accurate method to assess tracer binding [61], but it

remains to be demonstrated through comparison with an

independent method whether DVRs would provide more

reliable measures of amyloid plaque load than SUVRs. A

small published series comparing the use of the PIB DVR

with post-mortem assessment also found considerable

variation [71].

Perspectives

PET is the most accurate in vivo technique for measuring

local tracer activity in tissue. For clinical and research use

in dementia, measured tracer activity is most often trans-

formed into measures of regional glucose metabolism or

amyloid deposition. This overview examined the main

factors that currently limit the quantification accuracy of

these parameters. In spite of these limitations they already

improve clinical diagnosis and can predict whether patients

with MCI are likely to progress to AD. Reliance on a

reference region, which cannot actually be guaranteed to be

unaffected in neurodegenerative disease, is one of the main

obstacles to substantial progress. It is hoped that further

improvement and standardisation of techniques for accu-

rate non-invasive recording of input functions will over-

come that hurdle. New tracers are being developed that

may provide better quantification of deposition of patho-

logical proteins than currently available tracers do. Further

improvement of statistical methods and multimodal image

processing techniques are expected to provide more accu-

rate prediction of disease progression [72, 73] and a better

understanding of the multifactorial pathophysiology of

dementia [74]. Ultimately, these techniques should con-

tribute to an emerging new concept of neurodegenerative

diseases that is no longer restricted to categorical diag-

nostic classification but identifies a cascade of interacting

molecular processes [75], which might be treated by per-

sonalised and targeted intervention at an early stage before

onset of dementia.
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Karrasch M, Någren K, Grimmer T, Miederer I, Edison P, Okello

A, Laere K, Nelissen N, Vandenbulcke M, Garibotto V, Almkvist

O, Kalbe E, Hinz R, Herholz K (2013) A European multicentre

PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl

Med Mol Imaging 40:104–114

330 Clin Transl Imaging (2014) 2:321–330

123


	The role of PET quantification in neurological imaging: FDG and amyloid imaging in dementia
	Abstract
	Introduction
	Quantitative measures provided by PET
	Quantification of cerebral glucose metabolism by FDG PET
	Quantification of FDG PET studies in dementia
	Amyloid deposition
	Perspectives
	Conflict of interest
	References


